钛掺杂蓝宝石(Ti3+:Sapphire)作为一种光抽运的固态激光晶体,广泛应用于波长可调谐激光器中,可调谐范围为 650-1100nm,峰值为 800nm,是波长可调谐激光晶体中最宽的一种。以 490 nm 为中心的 Ti:Sapphire 吸收带使其适用于各种激光泵浦源——氩离子、倍频 Nd:YAG 和 YLF、铜蒸气激光器。由于 3.2 μs 的荧光寿命,Ti:Sapphire 晶体可以在强大的激光系统中通过短脉冲闪光灯有效地泵浦。采用自锁模技术,钛宝石激光器可以直接输出脉宽小于6.5fs 的激光脉冲,这是所有直接从谐振腔输出的激光器中最窄的激光脉冲。通过双频技术,激光束的波长可以覆盖从蓝色到深紫外的宽波段,生产的 193nm 激光已用于光刻机。
案例
案例
钛宝石晶体用于780nm激光器
泵浦激光:532nm/10- 20kHz/25W/20ns;
镀膜:AR@532nm&780nm&980nm,R<0.5%,损伤阈值达到750MW/cm2
钛宝石晶体生长加工
泵浦激光:532nm/10- 20kHz/25W/20ns;
镀膜:T>99.5%@500nm-1000nm
钛宝石晶体案例(三)用于671nm & 729nm & 800nm 激光器
规格: φ6×15 mm;
方向:布鲁斯特切;
宽带镀膜 AR@671nm-800nm, R<0.5% (包括671nm & 729nm & 800nm
钛宝石晶体案例(四)
规格:3×6×7 mm;
3×7 双面布切
钛宝石晶体案例(五)
规格:Φ4×15mm;
宽带AR 镀膜 @670 to 800nm, R<0.5%
钛宝石晶体案例(六)
规格:3*3*20mm;
双面布切,两端抛光布切
参数
材料 | Ti3+:Al2O3 |
浓度 | (0.05~0.35) wt% |
取向 | A轴在5°内,E矢量平行于C轴 |
平行性 | 30〞 |
垂直性 | 5ˊ |
品质因数(FOM) | 100~300 |
波前失真 | <λ /4@632 nm |
表面平整度 | <λ/8@632 nm |
通光孔径 | >90% |
表面质量 | 10-5(MIL-PRF-13830B) |
镀膜 | Standard coating is AR with R < 5.0% each |
face @532 nm and R < 0.5% each face, | |
from 650 nm to 850 nm. Custom coatings | |
倒角 | <0.2×45° |
晶体结构 | 六方晶系 |
密度 | 3.98 g/cm3 |
熔点 | 2040 °C |
导热系数 | 33 W / (m K) |
折射率温度系数 | 13 × 10−6K−1 |
抗热震参数 | 790 W/m |
热膨胀 | ≈ 5 × 10-6K-1 |
硬度(莫氏) | 9 |
杨氏模量/ GPa | 335 |
比热容 | 0.1 cal/g |
抗拉强度/ Mpa | 400 |
直径 | 4-12mm |
0.1%掺钛的密度 | 4.56 × 1019cm−3 |
激光跃迁 | F3/2→F1/2 |
上能级寿命 | 3.2 μs |
可调谐吸收带 | 400-600 nm |
荧光发射波长范围 | 600-1200 nm |
峰值发射波长 | ~780 nm |
吸收峰 | 488 nm |
峰值受激发射截面:平行于c轴 | 4.1×10-19cm2 |
峰值受激发射截面:垂直于c轴 | 2.0×10-19cm2 |
795 nm 处受激发射截面 | 2.8×10-19cm2 |
795 nm 处饱和通量 | Es=0.9J/cm2 |
发射线宽 | 650-1100 nm |
折射率 | 1.77@ 532 nm; 1.76@800 nm; 1.75@1100 nm |
吸收系数 | 0.8~7.0 cm-1 |
损伤阈值(10ns,1064nm) | 10J/cm2 |
特点
应用
参考文献
新闻
特点
- 宽波长可调谐性
- 宽吸收泵浦带
- 卓越的输出效率
- 激发态寿命短(3.2 μm)
- 窄锁模宽度
- 高损伤阈值
- 优良的导热性
应用
材料加工
- 800nm激光器
原理图
参考文献
[1] Alombert-Goget G , Sen G , Pezzani C , et al. Large Ti-doped sapphire single crystals grown by the kyropoulos technique for petawatt power laser application[J]. Optical Materials, 2016:21-24. |
[2] Stelian C , Alombert-Goget G , Sen G , et al. Interface effect on titanium distribution during Ti-doped sapphire crystals grown by the Kyropoulos method[J]. Optical Materials, 2017, 69:73-80. |
[3] Alombert-Goget, G, Brenier, et al. Luminescence and coloration of undoped and Ti-doped sapphire crystals grown by Czochralski technique[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2016. |
[4] Alombert-Goget G , Lebbou K , Barthalay N , et al. Large Ti-doped sapphire bulk crystal for high power laser applications[J]. Optical Materials, 2014, 36(12):2004-2006. |
[5] Sen G , Caliste T T , Stelian C , et al. Synchrotron X-ray diffraction imaging studies of dislocations in Kyropoulos grown Ti doped sapphire crystal[J]. Journal of Crystal Growth, 2016:S0022024816309423. |
[6] Katsumata T , Nakayama A , Kano Y , et al. Characteristics of Ti-doped sapphire for fluorescence thermo-sensor[C]// International Conference on Control. IEEE, 2007. |
[7] Liu T W , Wu C M , Lin S Y , et al. Compact and Dual Ti:Sapphire comb lasers pumped by single fiber laser[C]// European Frequency & Time Forum & International Frequency Control Symposium. IEEE, 2014. |
[8] Stanley R J , Swent R L , Smith T I . Synchronization of a femtosecond modelocked Ti: sapphire laser to the Stanford SCA/FEL[J]. Optics Communications, 1995, 115(1-2):87-92. |
[9] Zhang Q , Zhao Y , Wei Z . Generation of sub-10fs pulses with repetition rate of 1.1 GHz from Ti: Sapphire oscillator. IEEE, 2009. |
[10] Sugiyama N , Tanaka H , Kannari F . Ti: Sapphire laser directly pumped by 478-and 520-nm laser diodes[C]// Conference on Lasers & Electro-optics Europe & European Quantum Electronics Conference. 2017. |
[11] Deng P Z . Ti: SAPPHIRE CRYSTAL USED IN ULTRA FAST LASERS AND AMPLIFIERS. Journal of Infrared and Millimeter Waves, 2002. |
[12] Hong-jun, Liu, and,等. Noncollinear optical parametric amplification in lithium triborate seeded by a cw Ti:sapphire laser[J]. Optics & Laser Technology, 2004. |
[13] Akman E , Aktas O C , Oztoprak B G , et al. Fragmentation of the gold nanoparticles using femtosecond Ti:Sapphire laser and their structural evolution[J]. Optics & Laser Technology, 2013, 49:156-160. |
[14] Ren Y , Zhang L , H Xing, et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal[J]. Optics & Laser Technology, 2018, 103:82-88. |
[15] Schmidt M , Li L . Wettability analysis of laser deposited Ti:Sapphire[J]. Applied Surface ence, 2003, 208-209(Mar):651-657. |
[16] Farkas G , C Tóth, Neuman K C , et al. Wavelength dependence of harmonic generation efficiency at metal surfaces induced by femtosecond Ti:sapphire laser pulses[J]. Optics Communications, 1996, 132(3-4):289-294. |
[17] Mehendale M , Nelson T R , Omenetto F G , et al. Thermal effects in laser pumped Kerr-lens modelocked Ti:sapphire lasers[J]. Optics Communications, 1997, 136(1-2):150–159. |
[18] Asakawa Y , Kumagai H , Midorikawa K , et al. 50% frequency doubling efficiency of 1.2-W cw Ti:sapphire laser at 746 nm[J]. Optics Communications, 2003, 217(1-6):311-315. |
[19] Jie J , Hasama T , Zhang Z , et al. 1.25-MW peak-power Kerr-lens mode-locked Ti:sapphire laser with a broadband semiconductor saturable-absorber mirror[J]. Optics Communications, 2000, 183(1-4):159-163. |
[20] Kitano H , Kinoshita S . Stable multipulse generation from a self-mode-locked Ti:sapphire laser[J]. Optics Communications, 1998, 157(1-6):128-134. |
[21] Dyer P E , Jackson S R , Key P H , et al. Excimer laser ablation and film deposition of Ti:sapphire[J]. Applied Surface Science, 1996, s 96–98(none):849-854. |
[22] Cappelli E , Orlando S , D Sciti, et al. Improving solar radiation absorbance of high refractory sintered ceramics by fs Ti:sapphire laser surface treatment[J]. Applied Surface ence, 2014, 302(may 30):177–183. |
[23] Endo A . Highly stabilized femtosecond Ti:sapphire laser designed for beam interaction experiment[J]. Nuclear Inst & Methods in Physics Research A, 2000, 455(1):228-235. |
[24] Kiriyama H , Mori M , Nakai Y , et al. Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system[J]. Optics Communications, 2009, 282(4):625-628. |
[25] Liang X , Leng Y , Lin L , et al. Compact 120 TW Ti:sapphire laser system with a high gain final amplifier[J]. Optics & Lasers in Engineering, 2006, 44(2):130-137. |
[26] Ming L , Nicholson J , Rudolph W . Multiple pulse operation of a femtosecond Ti:sapphire laser[J]. Optics Communications, 1997, 142(1-3):45-49. |
[27] Kodach V M , Faber D J , Leeuwen T . Wavelength swept Ti:sapphire laser[J]. Optics Communications, 2008, 281(19):4975-4978. |
[28] Samanta G K , Kumar S C , Devi K , et al. High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm[J]. Optics & Lasers in Engineering, 2012, 50(2):215-219. |
[29] Zhou Q , Chen L , Xu X . Numerical analysis of the output power of the injection-locked cw Ti:sapphire lasers[J]. Optics Communications, 2011, 284(13):3378-3382. |
[30] Jin W Y , Lee S K , Yu T J , et al. Broadband, high gain two-stage optical parametric chirped pulse amplifier using BBO crystals for a femtosecond high-power Ti:sapphire laser system[J]. Current Applied Physics, 2012, 12(3):648-653. |
新闻
柳橙 says
寻钛宝石晶体