

简介

YCOB (YCa₄O(BO₃)₃,氧化钇钙) --非线性晶体被认为具有良好的紫外波段光学频率倍增器前景。

YCOB 晶体是应用最广泛的非线性光学晶体之一。它的非线性光学系数等于BBO 晶体和LBO 晶体的非线性光学系数。二阶和三阶的有效倍频系数分别达到KDP 的2、8 和1、4 倍,YCOB 晶体具有孔径大、飞秒区损伤强度高、允许角范围宽、允许值在2000-2500GW/cm²左右的优点。温度范围小,分散角小,用CZ 法生长周期短,同时具有稳定的理化性能(不潮解)和良好的加工性能。因此,认为蓝绿光和紫外波段光学倍频晶体具有良好的应用前景。与 YCOB 相关的最新技术成果之一是通过二极管阵列端部泵浦 Nd:YVO4 激光器(P=5.6W)的腔间 SHG,在1.2cm 长的晶体(θ=64.5°, φ=35.5°)中产生 2.35-W 的连续绿光(λ=532nm)输出。另一个类似的应用是 Nd:YVO4激光辐射的 THG。利用 KTP 晶体倍频和 1.1 厘米长的晶体(θ=106°,φ=77.2°) 在355nm 近红外光学参量啁啾脉冲放大器中获得了 124mW 的准连续光(脉冲重复频率 20kHz),目前这种具有高平均和超高峰值功率的 CLE脉冲准连续光放大器的光学频率很少。

特征

- 高电阻率
- 高温验收
- 高激光诱导损伤阈值
- 各向异性较小
- 热膨胀系数小
- 参数发光较少

应用

- SHG (二次谐波产生), THG (三次谐波代)
- OPO(光学参量振荡器)
- OPA(光学参量放大)
- OPCPA(光学参量啁啾脉冲放大)
- 压电加速度传感器

含氧硼酸钇钙

物化性能

属性	数值
化学式	YCa ₄ O(BO ₃) ₃
晶体结构	Monoclinic, Point group m
晶格常数	a=8.0770 Å, b=16.0194 Å ,
	c=3.5308 Å , β=101.167°, Z=2
密度	3.31 g/cm ³
熔点	About 1510°C
莫氏硬度	6~6.5
导热系数	2.6 W/m/K (X), 2.33
	W/m/K (Y), 3.1 W/m/K
	(Z)

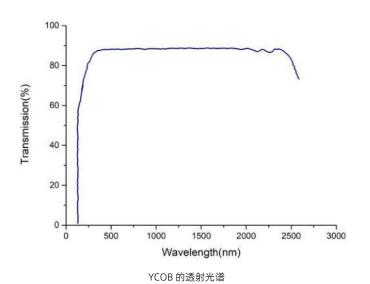
YCOB 晶体中有效二阶非线性光学效应的实验值

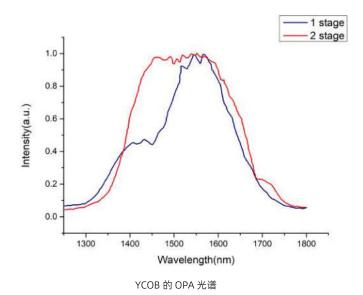
(SHG, I型, 1.0642µm→0.5321µm)

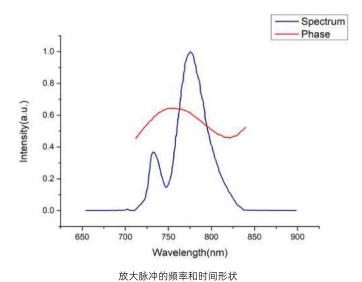
相位匹配方向	数值	
θ=90°, Φ=35.3°(XY plane)	0.39	
θ=90°, Φ=35°(XY plane)	0.42	
θ=31.7°, Φ=0°(XZ plane)	1.03	
θ=148.3°, Φ=0°(XZ plane)	1.44	
θ=65°, Φ=36.5°	1.14	
θ=66.3°, Φ=143.5°	1.45	
θ=66°, Φ=145°	1.8	

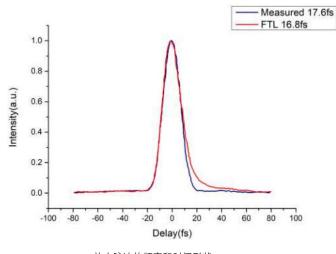
在 YCOB 晶体的情况下,deff 的性质包括反射对称性和 反转对称性。这意味着可以通过选择两个独立的象 限来充分描述 deff 的空间分布,例如,(0°< θ <90°、0°< ϕ <90°)和(0°< θ <90°、90°< ϕ <180°)。然 后,这两个象限中每个(θ , ϕ)方向的 deff 值等于 (180°- θ), 180°- ϕ)方向的值,反之亦然。例如,方 向(θ °=33°, ϕ =9°)和(θ =147°, ϕ =171°)具有相等的deff 值。

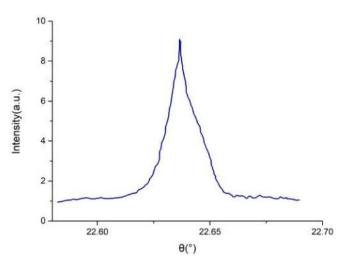
T=293K 时内角带宽的实验值


相互作用波长[µm]	$\Phi_{pm}[deg]$	$\theta_{pm}[deg]$	$\Delta\Phi^{int}[deg]\Delta\theta^{int}[deg]$
XY plane, θ=90°			
SHG, 0+0 → e			
1064 → 532	35		0.09
SHG, e+o \rightarrow e			
1064 → 532	73.4		0.32
SFG, 0+0 → e			
1064+532 → 355	73.2		0.11
YZ plane, Φ=90°			
SHG, e+o → e			
1064 → 532		56.7	0.74
SHG, e+e → o			
1064+532 → 355		58.7	0.19
XZ plane, Φ=0°, θ <v<sub>Z</v<sub>			
SHG, o+o → e			
1064 → 532		31.7	0.08


相位匹配角实验值(T=293K)


相互作用波长[µm]	Φ _{exp} [deg]	
XY plane, θ=90°		
SHG, 0+0 → e		
1064 → 532	35	
738 → 369	77.3	
SHG, type I, along Y		
724 → 362	90	
SFG, 0+0 → e		
1064+532 → 355	75.2	
SHG, type II , along Y		
1030 → 515	90	
SFG, e+o → e		
1908+1064 → 683	81.2	




吸收光谱

放大脉冲的频率和时间形状

了解更多资讯,请关 注我们的公众号--上海 芯飞睿科技有限公司

YCOB 晶片的 X 射线摇摆曲线