参数
| 点组 | C3v-3m |
| 折射率在632.8nm | n0=2.176 |
| ne=2.186 | |
| 透明范围 | 0.4-5.0μm |
| 取向 | X,Z,36°Y,42°Y,128°Y |
| 熔点 | 1650℃ |
| 密度 | 7.45g/cm3 |
| 莫氏硬度 | 5.5 |
| 热膨胀系数 | aa=16×10-6/K, ac=4×10-6/K |
| 比热 | 0.06J/(kg•°C) |
| 晶胞参数 | a=5.154Å,c=13.781Å |
| 居里温度 | 605℃ |
| 弹性刚度系数 | CE11=2.33(×1011N/m2) |
| CE33=2.77(×1011N/m2) | |
| 电光系数@0.63μm | γS13=7×10-12m/V |
| γS33=30.3×10-12m/V | |
| 热容量(Cp) | 100 J / k.mol |
在632.8 nm处的电光系数r(10-12 mV-1)
| rT13 | 8.4 | rS13 | 7 |
| rT22 | – | rS22 | 1 |
| rT33 | 30.5 | rS33 | 30.3 |
| rT51 | – | rS51 | 20 |
在1-06 μ m处的非线性光学系数(*d31=d15)
| d22 / l d36KDP l | 4.4 |
| d31 / l d36KDP l | -2.7 |
| d33 / l d36KDP l | -4.1 |
在632.8 nm处的反射系数
| no | 2.1787 |
| ne | 2.1821 |
| no: TE mode ne: TM mode | |
表面声波特性
| 描述 | 传播 | 设计 | 表面波速度(m/s) | 耦合系数k㎡% | 群延迟时间温度系数(ppm/摄氏度) |
| 36 ° Y – 切向 | X – 轴 | SSBW | 4160 | 5 | 28 ~ 32 |
| 42° Y – 切向 | X – 轴 | SSBW | 4022 | 7.6 | 40 |
| X – 切向 | 112.2 Y方向 | SAW | 3290 | 0.75 | 18 |
| SAW =表面声波 L,SAW =漏声表面波; | |||||
压电耦合因数及频率常数
| 平面方向 | 波型 | 耦合因数 | 共振频率常数 (MHz-mm) |
| X | S | 0.44 | 1.906 |
| Z | E | 0.19 | 3.04 |
| 36° Y – 切向 | QE | – | – |
| 163° Y – 切向 | QS | – | – |
| E = extensional S = shear QE = quasi – extensional QS = quasi – shear | |||
| 弹性刚度系数 | c11 | c12 | c13 | c14 | c33 | c44 |
| cij /(1010N/m2) | 22.8 | 3.1 | 7.4 | -1.2 | 27.1 | 9.6 |
| 压电应变常数 | d15 | d22 | d31 | d33 | ||
| dij /(10-11C / N) | 2.6 | 0.85 | -0.3 | 0.92 | ||
| 介电常数 | εT11/ε0 | εT11/ε0 | ||||
| 53 | 44 | |||||
| 机电耦合系数kij(%) | k15 | k31 | ||||
| 50 | 50 |
特点
应用
参考文献
新闻
特点
- 电光系数大
- 不容易潮解
- 高敏感度
- 透明范围广
- 高光学损伤阈值
- 稳定的化学和物理性质
应用
电光偏转器
- 光存储
- 高速全息相机
- 暂态记录
样品描述
参考文献
| [1] Ismangil A , Irmansyah, Irzaman. The Diffusion Coefficient of Lithium Tantalite (LiTaO 3 ) with Temperature Variations on LAPAN-IPB Satellite Infra-red Sensor ☆[J]. Procedia Environmental Sciences, 2016, 33:668-673. |
| [2] Steinberg I S , Kirpichnikov A V , Atuchin V V . Two-photon absorption in undoped LiTaO3 crystals[J]. Optical Materials, 2018, 78:253-258. |
| [3] Zhao, Lina, Zeng, et al. Femtosecond supercontinuum generation and Cerenkov conical emission in periodically poled LiTaO3[J]. Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic, 2018, 156:333-337. |
| [4] [ Gaojian Qiu, Ye H , Wang X , et al. Intense piezoluminescence in LiTaO3 phosphors doped with Pr3+ ions[J]. Ceramics International, 2019. |
| [5] Zhang D L , Zhang Q , Wong W H , et al. Er3+ diffusion in LiTaO3 crystal[J]. Applied Surface Science, 2015, 357(DEC.1PT.A):1097-1103. |
| [6] Misbakhusshudur M , Ismangil A , Aminullah, et al. Phasor Diagrams of Thin Film of LiTaO3 as Applied Infrared Sensors on Satellite of LAPAN-IPB[J]. Procedia Environmental Sciences, 2016, 33:615-619. |
| [7] Liang W F , Lu Y , Wu J , et al. Application of LiTaO3 pyroelectric crystal for pulsed neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 2016, 827(aug.11):161-164. |
| [8] Ji J , Yang C , F Zhang, et al. A high sensitive SH-SAW biosensor based 36° Y-X black LiTaO3 for label-free detection of Pseudomonas Aeruginosa[J]. Sensors and Actuators B Chemical, 2018, 281. |
| [9] Ma C , Lu F , Jin L , et al. Surface modification of single crystal LiTaO3 by H and He implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017. |
| [10] Hanamoto K , Kataoka T , Yamaoka K . Pressure dependence of X-rays produced by an LiTaO 3 single crystal over a wide range of pressure[J]. Applied Radiation and Isotopes, 2018, 135:40-42. |
| [11] Ns A , Yk A , Rksa B . LiTaO 3 based metamaterial perfect absorber for terahertz spectrum[J]. Superlattices and Microstructures, 2017, 111:754-759. |
| [12] Evolution of optical absorption and strain in LiTaO3 crystal implanted by energetic He-ion[J]. Nuclear Inst & Methods in Physics Research B, 2015, 354(jul.1):301-304. |
| [13] Gruber M , Konetschnik R , Popov M , et al. Atomistic origins of the differences in anisotropic fracture behaviour of LiTaO 3 and LiNbO 3 single crystals[J]. Acta Materialia, 2018:373-380. |
| [14] Wu X L , Zhang M S , Yan F , et al. Localized vibration in proton-exchanged LiNbO3 and LiTaO3 crystals[J]. Solid State Communications, 1995, 93(2):131–134. |
| [15] Ballandras S , Courjon E , Baron T , et al. LiTaO3/Silicon Composite Wafers for the Fabrication of Low Loss Low TCF High Coupling Resonators for Filter Applications[J]. Physics Procedia, 2015, 70:1007-1011. |
| [16] Ma, Yujie, Lu, et al. Study of the effect of H implantation and annealing on LiTaO3 surface blistering[J]. Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms, 2015. |
| [17] Hang W , Zhou L , Zhang K , et al. Study on grinding of LiTaO3 wafer using effective cooling and electrolyte solution[J]. Precision Engineering, 2016, 44:62-69. |
| [18] Liu G , He R , Akhmadaliev S , et al. Optical waveguides in LiTaO3 crystals fabricated by swift C5+ ion irradiation[J]. Nuclear Instruments & Methods in Physics Research, 2014, 325(apr.15):43-46. |
| [19] Zhang Y , Yu Z , Jia D , et al. Non-180° domains formation mechanism in LiTaO3 grains of an Al2O3/LiTaO3 composite[J]. Ceramics International, 2009, 35(3):949-952. |
| [20] Yang T , Liu Y G , Zhang L , et al. Powder synthesis and properties of LiTaO3 ceramics[J]. Advanced Powder Technology, 2014. |
| [21] Katsumi, Hanamoto, Takahiro, et al. Pressure dependence of X-rays produced by an LiTaO3 single crystal at the pressures of 1–20 Pa[J]. Applied Radiation & Isotopes, 2016. |
| [22] Pang L L , Wang Z G , Sun J R , et al. The energy loss effects on the absorption edge of LiTaO3 irradiated by energetic heavy ions[J]. Nuclear Inst & Methods in Physics Research B, 2013, 307(Complete):526-530. |
新闻

发表回复
要发表评论,您必须先登录。